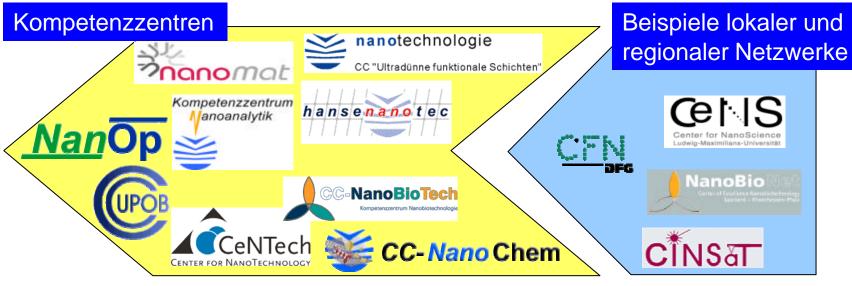
Präsentationsmaterialien

Reise in den Nanokosmos

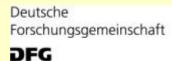
- I. Wissenschaftlich-technische Grundlagen
- II. Anwendungen, Produkte, Märkte
- III. Gesellschaftliche und politische Aspekte

Überblick Präsentationsmaterialien Teil 3

Gesellschaftliche und politische Aspekte:


Um Ergebnisse der Nanotechnologieforschung für die Menschen nutzbar machen und Deutschland voranzubringen, ist es wichtig

- ... Forschungsansätze strategisch zu fördern und Kompetenzen zu bündeln
- ... Spitzenpositionen im international Wettbewerb weiter zu verbessern
- … Chancen und Risiken im Umgang mit Nanotechnologie aufzuklären



Forschungs- und Förderorganisationen

Nanotechnologie in Deutschland (2) Kompetenzzentren und -netzwerke

- NanoMat Forschungszentrum Karlsruhe GmbH – Karlsruhe
- Kompetenzzentrum Ultrapräzise Oberflächenbearbeitung e. V. – Braunschweig
- Exzellenznetzwerk für Nanobiotechnologie ENNab – München
- CeNTech GmbH Münster
- HanseNanoTec Hamburg
- CC-NanoChem Saarbrücken
- CC-NanoBioTech Kaiserslautern
- Kompetenzzentrum "Ultradünne funktionale Schichten" – Dresden
- Kompetenzzentrum NanOp Berlin
- ■ Ultradünne Schichten
- Laterale Nanostrukturen
- ●▲ Nanopartikel
- OA Molekulare Architekturen
- ■ Ultrapräzise Bearbeitung von Oberflächen
- ▲ Vermessung und Analyse von Nanostrukturen
- Universitäre Forschungseinrichtungen
- ▲ Außeruniversitäre Forschungseinrichtungen
- Firmen

Rahmenkonzept zur Nanotechnologie in Deutschland

Strategische Neuausrichtung der staatlichen Forschungsförderung durch das Bundesministerium für Bildung und Forschung mit drei Bausteinen:

1. Markt- und Beschäftigungspotenziale durch F&F erschließen

Nachwuchs f\u00f6rdern und Qualifikation vorantreiben

3. Chancen und Perspektiven für die Gesellschaft nutzen und Risiken beherrschbar machen

und Forschung

BMBF-Leitinnovationen zur Nanotechnologie

NanoFab
Ultrapräzise Hochdurchsatzfabrikation

für die Nanoelektronik

■ NanoLux effiziente Strahlquellen für innovative Lichtanwendungen

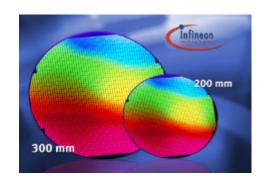
NanoMobil
Nanomaterialien und Nanotechnologie im Auto

NanoforLife
Nanomaterialien und Nanobiotechnologie

für LifeSciences und Gesundheit

BMBF-Leitinnovation NanoFab

300 mm Wafer-Technologie: 143 Mio €

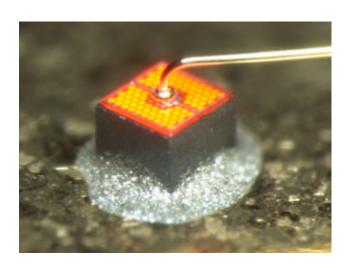

- weltführend in Deuschland entwickelt
- Basis für Nanoelektronikstandort Sachsen

Lithograhie (Herstelltechnologie): 100 Mio €

- 157 Nanometer Lithographie
- EUV-Lithographie
- Europäische Kooperationspartner werden Weltmarktführer

Maskentechnologie: 80 Mio €

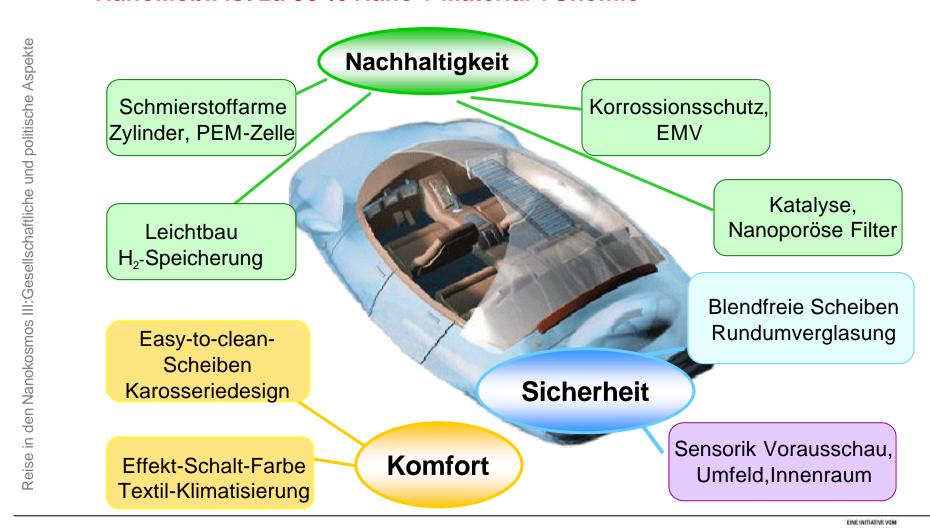
- zieht amerikanische Investoren nach Deutschland
- koppelt Forschung und Produktion



BMBF-Leitinnovation NanoLux

Nanotechnologie für energiesparende Beleuchtungssysteme Ziel zukünftiger Beleuchtungstechnik: Effizientere Lichtausbeute

(herkömmliche Glühbirne: 95% der Energie wird in Wärme umgewandelt) weltweites Marktvolumen für Beleuchtung: 12 Mrd € (in Deutschland 20%)



BMBF-Leitinnovation NanoMobil

NanoMobil ist zu 90 % Nano + Material + Chemie

BMBF-Leitinnovation NanoforLife

Gesundheit ist einer der wichtigsten Grundwerte der Gesellschaft

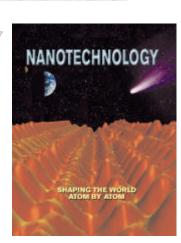
Demografische Entwicklung und Verfügbarkeit neuer Diagnostika und Therapeutika tragen zur Kostenexplosion im Gesundheitssystem bei (in Deutschland 225,9 Mrd. Euro in 2001).

Potenziale der Nanotechnologie in der Medizin:

- Entwicklung neuer Diagnostika und Therapeutika (z.B. Nanopartikel zur Behandlung von Krebs, verbesserte bildgebende Verfahren)
- Reduzierung unerwünschter Nebenwirkungen durch spezifischen Wirkstoff-Transport und geringere Dosierung (Drug-Delivery-Systeme, "Theranostik")
- Langfristig: **Kostensenkung** im Gesundheitswesen durch niedrigere Herstellungskosten, bessere Prävention, langlebigere Implantate

Öffentliche Diskussion zur Nanotechnologie (1)

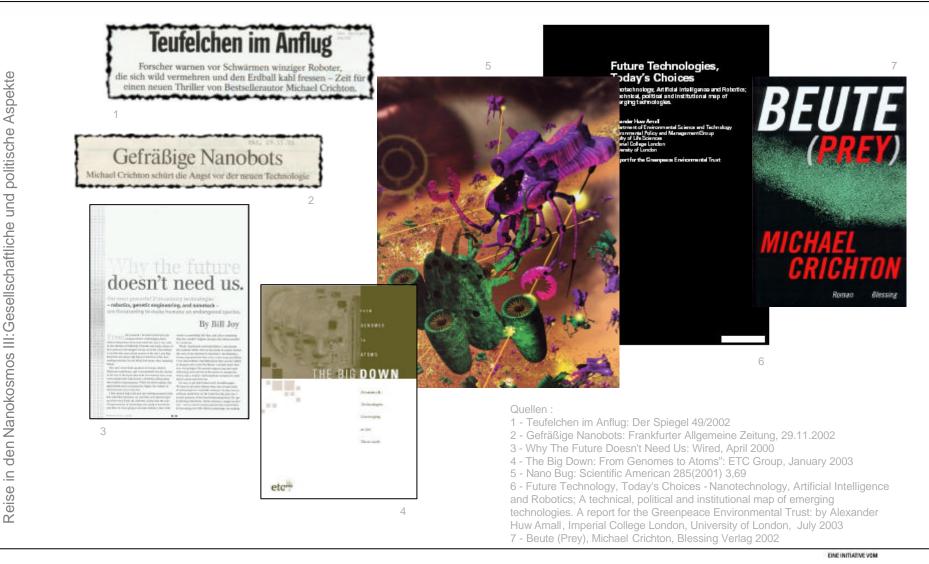
HDL 1.11.


Dank Nanotechnologie ist Zahnreparatur aus der Tube möglich In vielen Alltagsbereichen sollen diese Alleskömer unser Leben verändern / Reine "Exotendiszäplin" / BASF gut positioniert

4

Quellen:

1 - Die Wunderwelt der winzigen Giganten: PM 10/2002


- 2 Die kleine Technik-Revolution: Rhein-Neckar-Zeitung, 30.10.2002
- 3 Rechnen mit dressierten Atomen: Welt am Sonntag, 11.11.2002
- 4 Dank Nanotechnologie ...: Badische Neueste Nachrichten, 3.11.2002
- 5 'Nano-U-Boot': Der Spiegel 52/2001
- 6 Aufbruch in die Zwergenwelt: Der Spiegel 52/2001
- 7 Nanotechnology: Shaping The World Atom By Atom: National Science and Technology Council, September 1999
- 8 'Verkabelter Kosmos': Der Spiegel 47/2002

Öffentliche Diskussion zur Nanotechnologie (2)

Nanotechnologie-Projektförderung durch das Bundesministerium für Bildung und Forschung (BMBF)

Schwerpunktthemen (Fördersummen für 2004 in Mio. €)

Nanomaterialien	32,7
Produktionstechnologien	2,2
Optische Technologien	26,0
Mikrosystemtechnik	9,4
Kommunikationstechnologien	3,6
Nanoelektronik	44,7
Nanobiotechnologie	5,0
Innovations- und Technikanalysen	0,2

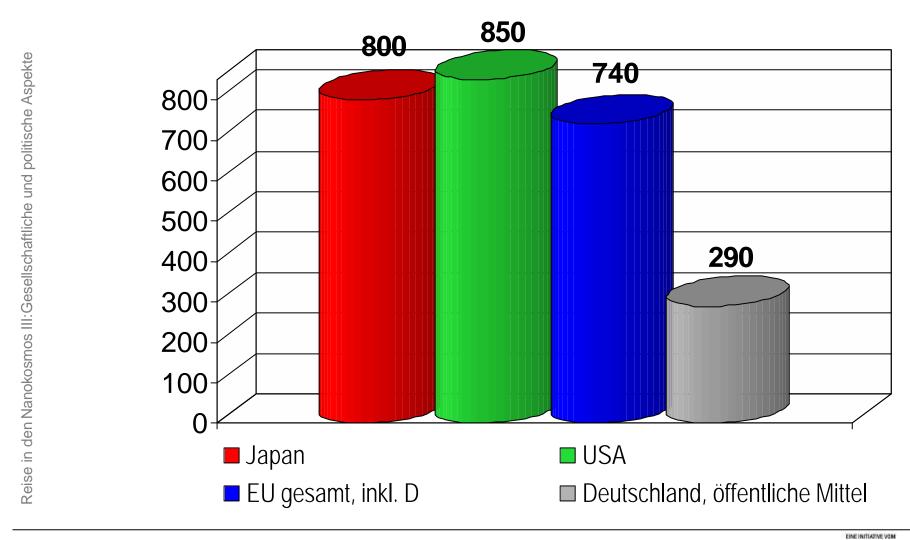
Summe 123,8 Mio. €

Institutionelle Förderung durch das Bundesministerium für Bildung und Forschung (BMBF)

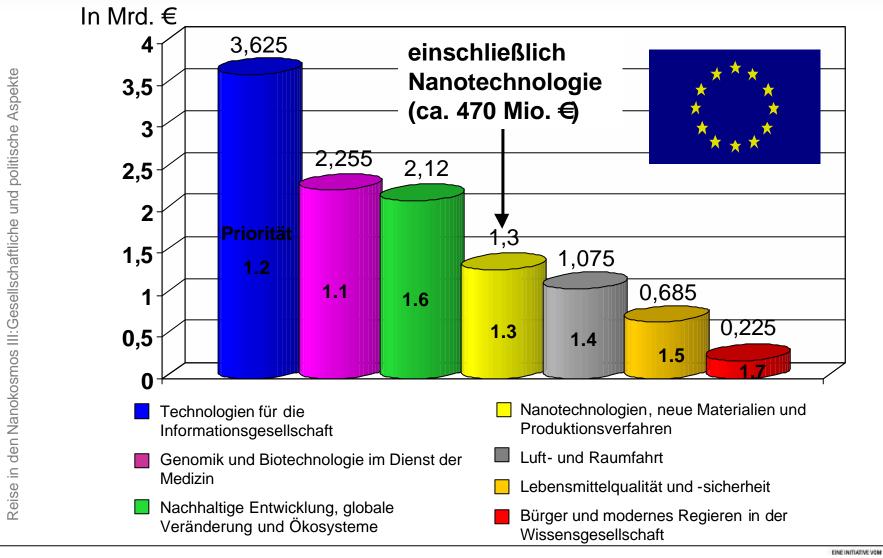
Schwerpunktthemen (Fördersummen für 2004 in Mio. €)

Deutsche	Forschungsgemeinschaft	(DFG	60,0
	J J	`	, -

- Wissensgemeinschaft G.W. Leibnitz (WGL) 23,4
- Helmholtz-Gemeinschaft Deutscher Forschungs zentren (HGF)37,4
- Max-Planck Gesellschaft (MPG)
 14,8
- Fraunhofer Gesellschaft (FhG) 5,2
- Center for advanced european studies and reserach (Caesar)

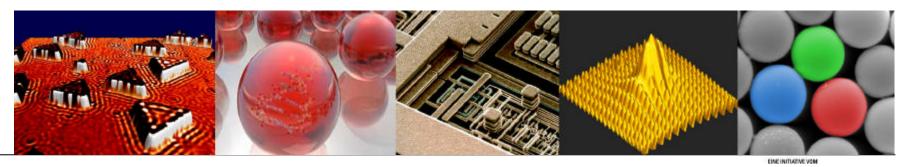

Summe 144,8 Mio. €

Nanotechnologie-Förderung im internationalen Vergleich (2004)


Übersicht 6. Forschungsrahmenprogramm (6. FRP)

Bündelung und Integration der Forschung								
Thematische Prioritäten					Spezielle Maßnahmen			
Genomik und Biotechnologie im Dienst der Medizin	logien für die tionsgesellschaft	ese ogie	Luft- und Raumfahrt	-ebensmittelqualität und -sicherheit	Entw., globale + Ökosysteme	modernes d. Wiss.ges.	Politik- orientierte Forschung KMU-spezifisch	Künftiger Wissenschafts- und Technolo- giebedarf
			und R		a	ınd mı n in d.	Internationale Zusammenarbeit	
Genomik im Dienst	Techno Informa	Technologien Informationsg Nanotechnol Materialien+F Luft- und Raund Raund Raund - sicherh		Nachhaltige Veränderg.	Bürger und modernes Regieren in d. Wiss.ge	Gemeinsame Forschungsstelle (GFS)		
Ausgestaltung des Europäischen Forschungsraums (EFR)					Stärkung der Grundpfeiler des EFR			
Innovation		Human ressource		Infra- rukturen	ι	enschaft Ind Ilschaft	Koordinierung von FuE- Aktivitäten	Kohärente Entwicklung der FuE-Politik

Budget für thematische Prioritäten in EU-Forschungsprojekten (Gesamt: 11,285 Mrd. €, ohne EURATOM)



Nanotechnologie-Forschung in der EU: Schwerpunkte im 6. FRP

- Langfristige interdisziplinäre Forschung zur Erweiterung des Kenntnisstandes,
- Prozesssteuerung und Entwicklung von Forschungsinstrumenten supramolekularer Architekturen und Makromoleküle
- Nanobiotechnologie
- Ingenieurtechniken im Nanomaßstab zur Entwicklung von Materialien und Komponenten
- Entwicklung von Steuer- und Kontrollgeräten und –instrumenten
- Anwendungen in Bereichen wie Medizin, Chemie, Optik, Energietechnik, Umwelttechnik

Dank an Beteiligte beim Erstellen des Materials

■ Forschungseinrichtungen, Universitäten und andere:

Leibnitz Institut für Neue Materialien, Forschungszentrum Jülich, MPI für Mikrostrukturphysik Halle, FhG-IWS, FhG-IAP, FhG-ISIT, TU Berlin, Universität Basel, Universität Bielefeld, Universität Bonn, Universitäts-Klinikum Charité, Universität Hamburg, Universität Marburg, Universität Paderborn, Universität Tübingen, European Commission, Forschungszentrum Karlsruhe

Kontaktadresse:

Zukünftige Technologien Consulting der VDI Technologiezentrum GmbH Graf-Recke-Str. 84, 40239 Düsseldorf

Tel.: 0211 / 6214 - 628 Fax.: 0211 / 6214 - 139

http://www.vditz.de heyer-wevers@vdi.de

Kompetenzzentren (CC):

CeNTech, CC HanseNanoTec, CC Nanoanalytik, CC NanoChem, CC NanOp, CC Ultradünne funktionale Schichten, CC UPOB

■ u.a. folgende Firmen haben Bildmaterial oder Folien zur Verfügung gestellt:

Advanced Micro Devices (AMD), Sunnyvale (USA) - AGFA-Gevaert AG, Leverkusen - Aixtron AG,

Aachen - BASF AG, Ludwigshafen - BergerhofStudios, Köln - Carl Zeiss AG, Obercochen
DaimlerChrysler AG, Stuttgart - Degussa AG, Düsseldorf - Degussa Advanced Nanomaterials, Hanau
Flad & Flad Communication GmbH, Eckental - IBM Deutschland GmbH, Mainz - Infineon Technologies

AG, München - Leica Microsystems AG, Wetzlar - MagForce Applications GmbH, Berlin - micromod

Partikeltechnologie GmbH, Rostock-Warnemünde - Nano-X GmbH, Saarbrücken - OSRAM Opto

Semiconductors GmbH, Regensburg - Scienion AG, Berlin - Siemens AG, München - STO AG,

Stühlingen

